This was the situation in 1958, when Torsten Wiesel and I made one of our first technically successful recordings from the cortex of a cat. The position of microelectrode tip, relative to the cortex, was unusually stable, so much so that we were able to listen in on one cell for a period of about nine hours. We tried everything short of standing on our heads to get it to fire. (It did fire spontaneously from time to time, as most cortical cells do, but we had a hard time convincing ourselves that our stimuli had caused any of that activity.) After some hours we began to have a vague feeling that shining light in one particular part of the retina was evoking some response, so we tried concentrating our efforts there. To stimulate, we were using mostly white circular spots and black spots. For black spots, we would take a 1-by-2- inch glass microscope slide, onto which we had glued an opaque black dot, and shove it into a slot in the optical instrument Samuel Talbot had designed to project images on the retina. For white spots, we used a slide of the same size made of brass with a small hole drilled through it. (Research was cheaper in those days.) After about five hours of struggle, we suddenly had the impression that the glass with the dot was occasionally producing a response, but the response seemed to have little to do with the dot. Eventually we caught on: it was the sharp but faint shadow cast by the edge of the glass as we slid it into the slot that was doing the trick. We soon convinced ourselves that the edge worked only when its shadow was swept across one small part of the retina and that the sweeping had to be done with the edge in one particular orientation.